• DocumentCode
    106257
  • Title

    A Novel Digital Etch Technique for Deeply Scaled III-V MOSFETs

  • Author

    Jianqiang Lin ; Xin Zhao ; Antoniadis, Dimitri A. ; del Alamo, Jesus A.

  • Author_Institution
    Microsyst. Technol. Labs., Massachusetts Inst. of Technol., Cambridge, MA, USA
  • Volume
    35
  • Issue
    4
  • fYear
    2014
  • fDate
    Apr-14
  • Firstpage
    440
  • Lastpage
    442
  • Abstract
    We demonstrate a new digital etch technique for controllably thinning III-V semiconductor heterostructures with sub-1-nm resolution. This is a two-step process consisting of low-power O2 plasma oxidation, followed by diluted H2SO4 rinse for selective oxide removal. This approach can etch a combination of InP, InGaAs, and InAlAs in a precise and nonselective manner. We have also developed a method to determine the etch rate per cycle, and to control the etch depth in actual device structures. For InP, the etch rate is ~0.9 nm/cycle. We illustrate the new process by fabricating Lg=60-nm self-aligned buried-channel InGaAs MOSFETs. These devices feature a composite gate dielectric consisting of 1-nm InP and 2-nm HfO2 for an overall sub-1-nm effective oxide thickness. A typical device shows a peak transconductance of 1.53 mS/μm(Vds=0.5 V), subthreshold swing of 89 mV/decade, and 102 mV/decade at Vds=0.05 and 0.5 V, respectively, and on current of 326 μA/μm at IOFF=100 nA/μm and Vdd=0.5 V.
  • Keywords
    III-V semiconductors; MOSFET; aluminium compounds; etching; gallium arsenide; indium compounds; III-V semiconductor heterostructures; InAlAs; InGaAs; InP; actual device structures; composite gate dielectric; deeply-scaled III-V MOSFET; digital etch technique; effective oxide thickness; etch depth control; etch rate; low-power oxygen plasma oxidation; peak transconductance; selective oxide removal; self-aligned buried-channel MOSFET; size 1 nm; size 2 nm; subthreshold swing; two-step process; voltage 0.5 V; Etching; Indium gallium arsenide; Indium phosphide; Logic gates; MOSFET; Oxidation; Digital etch; InGaAs; MOSFETs; buried-channel; quantum-well devices; self-alignment;
  • fLanguage
    English
  • Journal_Title
    Electron Device Letters, IEEE
  • Publisher
    ieee
  • ISSN
    0741-3106
  • Type

    jour

  • DOI
    10.1109/LED.2014.2305668
  • Filename
    6742727