• DocumentCode
    1079525
  • Title

    Maximum likelihood estimation of synchronous machine parameters from standstill time response data

  • Author

    Keyhani, A. ; Tsai, H. ; Leksan, T.

  • Author_Institution
    Ohio State Univ., Columbus, OH, USA
  • Volume
    9
  • Issue
    1
  • fYear
    1994
  • fDate
    3/1/1994 12:00:00 AM
  • Firstpage
    98
  • Lastpage
    114
  • Abstract
    This paper presents a systematic approach for identification of a three-phase salient-pole synchronous machine rated at 5 kVA from standstill time-domain data. Machine time constant models and the equivalent circuit models are identified and their parameters are estimated. The initialization of the estimated parameters is achieved by the Laplace transformation of the recorded standstill time-response data and the derivation of the well-known operational inductances. The estimation is performed using the Maximum Likelihood algorithm. Based on the best estimated equivalent circuit models, simulation studies using the measured on-line dynamic responses are performed to validate the identified machine models
  • Keywords
    Laplace transforms; machine theory; maximum likelihood estimation; parameter estimation; synchronous machines; time-domain analysis; 5 kVA; Laplace transformation; Maximum Likelihood algorithm; equivalent circuit models; machine time constant models; maximum likelihood estimation; on-line dynamic responses; parameter estimation; salient-pole synchronous machine; standstill time response data; synchronous machine parameters; time-domain data; Cost function; Equivalent circuits; Maximum likelihood estimation; Parameter estimation; Synchronous machines; Testing; Time domain analysis; Time factors; Transfer functions; Voltage;
  • fLanguage
    English
  • Journal_Title
    Energy Conversion, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-8969
  • Type

    jour

  • DOI
    10.1109/60.282481
  • Filename
    282481