DocumentCode
1079525
Title
Maximum likelihood estimation of synchronous machine parameters from standstill time response data
Author
Keyhani, A. ; Tsai, H. ; Leksan, T.
Author_Institution
Ohio State Univ., Columbus, OH, USA
Volume
9
Issue
1
fYear
1994
fDate
3/1/1994 12:00:00 AM
Firstpage
98
Lastpage
114
Abstract
This paper presents a systematic approach for identification of a three-phase salient-pole synchronous machine rated at 5 kVA from standstill time-domain data. Machine time constant models and the equivalent circuit models are identified and their parameters are estimated. The initialization of the estimated parameters is achieved by the Laplace transformation of the recorded standstill time-response data and the derivation of the well-known operational inductances. The estimation is performed using the Maximum Likelihood algorithm. Based on the best estimated equivalent circuit models, simulation studies using the measured on-line dynamic responses are performed to validate the identified machine models
Keywords
Laplace transforms; machine theory; maximum likelihood estimation; parameter estimation; synchronous machines; time-domain analysis; 5 kVA; Laplace transformation; Maximum Likelihood algorithm; equivalent circuit models; machine time constant models; maximum likelihood estimation; on-line dynamic responses; parameter estimation; salient-pole synchronous machine; standstill time response data; synchronous machine parameters; time-domain data; Cost function; Equivalent circuits; Maximum likelihood estimation; Parameter estimation; Synchronous machines; Testing; Time domain analysis; Time factors; Transfer functions; Voltage;
fLanguage
English
Journal_Title
Energy Conversion, IEEE Transactions on
Publisher
ieee
ISSN
0885-8969
Type
jour
DOI
10.1109/60.282481
Filename
282481
Link To Document