DocumentCode
1088613
Title
VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images
Author
Chandler, Damon M. ; Hemami, Sheila S.
Author_Institution
Oklahoma State Univ., Stillwater
Volume
16
Issue
9
fYear
2007
Firstpage
2284
Lastpage
2298
Abstract
This paper presents an efficient metric for quantifying the visual fidelity of natural images based on near-threshold and suprathreshold properties of human vision. The proposed metric, the visual signal-to-noise ratio (VSNR), operates via a two-stage approach. In the first stage, contrast thresholds for detection of distortions in the presence of natural images are computed via wavelet-based models of visual masking and visual summation in order to determine whether the distortions in the distorted image are visible. If the distortions are below the threshold of detection, the distorted image is deemed to be of perfect visual fidelity (VSNR = infin)and no further analysis is required. If the distortions are suprathreshold, a second stage is applied which operates based on the low-level visual property of perceived contrast, and the mid-level visual property of global precedence. These two properties are modeled as Euclidean distances in distortion-contrast space of a multiscale wavelet decomposition, and VSNR is computed based on a simple linear sum of these distances. The proposed VSNR metric is generally competitive with current metrics of visual fidelity; it is efficient both in terms of its low computational complexity and in terms of its low memory requirements; and it operates based on physical luminances and visual angle (rather than on digital pixel values and pixel-based dimensions) to accommodate different viewing conditions.
Keywords
image processing; natural scenes; visual perception; wavelet transforms; Euclidean distances; VSNR; human vision; multiscale wavelet decomposition; natural images; near-threshold; suprathreshold properties; visual fidelity; visual masking; visual summation; wavelet-based models; wavelet-based visual signal-to-noise ratio; Digital images; Distortion measurement; Humans; Image analysis; Image coding; Object detection; PSNR; Psychology; Signal to noise ratio; Visual system; Contrast; distortion; human visual system (HVS); image fidelity; image quality; noise; visual fidelity; wavelet; Algorithms; Biomimetics; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Reproducibility of Results; Sensitivity and Specificity; Visual Perception;
fLanguage
English
Journal_Title
Image Processing, IEEE Transactions on
Publisher
ieee
ISSN
1057-7149
Type
jour
DOI
10.1109/TIP.2007.901820
Filename
4286985
Link To Document