• DocumentCode
    1112962
  • Title

    Methodological Insights for Online Estimation of Induction Motor Parameters

  • Author

    Laroche, Edouard ; Sedda, Emmanuel ; Durieu, Cécile

  • Author_Institution
    CNRS, Univ. Louis Pasteur, Illkirch
  • Volume
    16
  • Issue
    5
  • fYear
    2008
  • Firstpage
    1021
  • Lastpage
    1028
  • Abstract
    This paper presents contributions for online estimation of states and parameters of an induction motor with Kalman filter. In order to ensure a good level of confidence of the estimation, a suitable methodology is proposed and two of its main points are investigated. First, an original method is used for tuning the covariance matrices, relying on the evaluation of the state noise due to modeling errors. Second, an observability analysis is developed, allowing to validate the model and the proposed excitation trajectory. Experimental results show that, with the chosen input signal, the parameters can be estimated with good accuracy in less than two seconds.
  • Keywords
    Kalman filters; covariance matrices; induction motors; machine control; observability; parameter estimation; state estimation; Kalman filter; covariance matrix tuning; excitation trajectory; observability analysis; online induction motor parameter estimation; online state estimation; state noise; Extended Kalman filter (EKF); induction motors; observability; optimal experiment design; parameter estimation; real-time systems; state estimation;
  • fLanguage
    English
  • Journal_Title
    Control Systems Technology, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1063-6536
  • Type

    jour

  • DOI
    10.1109/TCST.2007.916317
  • Filename
    4476349