• DocumentCode
    1151874
  • Title

    No binary quadratic residue code of length 8m-1 is quasi-perfect

  • Author

    Chen, Xuemin ; Reed, I.S. ; Truong, T.K.

  • Author_Institution
    Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
  • Volume
    40
  • Issue
    2
  • fYear
    1994
  • fDate
    3/1/1994 12:00:00 AM
  • Firstpage
    503
  • Lastpage
    504
  • Abstract
    The class of binary quadratic residue (QR) codes of length n=8m-1 contains two perfect codes. These are the (7,4,3) Hamming code and the (23,12,7) Golay code. However, it is proved in the present paper that there are no quasi-perfect QR codes of length 8m-1. Finally, this result is generalized to all binary self-dual codes of length N>72
  • Keywords
    Hamming codes; error correction codes; (23,12,7) Golay code; (7,4,3) Hamming code; QR codes; binary quadratic residue code; binary self-dual codes; length 8m-1; quasiperfect QR codes; Binary codes; Information theory; Linear code; Upper bound; Vectors;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.312173
  • Filename
    312173