DocumentCode
1196116
Title
On the validity of a reduction of reliable network design to a graph extremal problem
Author
Bauer, D. ; Boesch, Francis T. ; Suffel, C. ; Van Slyke, R.
Volume
34
Issue
12
fYear
1987
fDate
12/1/1987 12:00:00 AM
Firstpage
1579
Lastpage
1581
Abstract
An undirected connected graph having failure probabilities associated with each edge is a classic model for network reliability studies. The network reliability is defined as the probability that the graph remains connected despite edge failures. It is known that the problem of calculating the network reliability is
-hard, even when the edge failures are equal and independent. Herein, we consider synthesis problems for the equal edge failure rate case. Specifically, we treat the case where the number of points
, the number of edges
, and the edge failure rate
are given; the synthesis problem is to find a
-point,
-edge graph that maximizes the network reliability for the given
. A simple intuitive argument indicates that this synthesis problem can be reduced to a solvable graph extremal question when
is small. Here we formalize this observation by giving explicit formulas for a range
of
values which allows the reliability synthesis problem to be reduced to this graph extremal question. We also discuss the possibility of extending this type of result to all possible
values
thereby obtaining a uniformly optimum graph. The problem of ascertaining the existence of such graphs remains open; however, we suggest several possible approaches. We also relate some reliability questions to unsolved graph extremal problems involving the maximum and minimum number of spanning trees among all
-point,
-edge graphs. Several conjectures regarding these latter problems are presented.
-hard, even when the edge failures are equal and independent. Herein, we consider synthesis problems for the equal edge failure rate case. Specifically, we treat the case where the number of points
, the number of edges
, and the edge failure rate
are given; the synthesis problem is to find a
-point,
-edge graph that maximizes the network reliability for the given
. A simple intuitive argument indicates that this synthesis problem can be reduced to a solvable graph extremal question when
is small. Here we formalize this observation by giving explicit formulas for a range
of
values which allows the reliability synthesis problem to be reduced to this graph extremal question. We also discuss the possibility of extending this type of result to all possible
values
thereby obtaining a uniformly optimum graph. The problem of ascertaining the existence of such graphs remains open; however, we suggest several possible approaches. We also relate some reliability questions to unsolved graph extremal problems involving the maximum and minimum number of spanning trees among all
-point,
-edge graphs. Several conjectures regarding these latter problems are presented.Keywords
Graph theory; Network reliability; Circuits and systems; Graph theory; Network synthesis; Terminology; Tree graphs;
fLanguage
English
Journal_Title
Circuits and Systems, IEEE Transactions on
Publisher
ieee
ISSN
0098-4094
Type
jour
DOI
10.1109/TCS.1987.1086075
Filename
1086075
Link To Document