• DocumentCode
    122443
  • Title

    Indoor positioning using Wi-Fi fingerprinting pedestrian dead reckoning and aided INS

  • Author

    Panyov, Alexey A. ; Golovan, Andrey A. ; Smirnov, Alexander S.

  • Author_Institution
    Lab. of Navig. & Control, Lomonosov Moscow State Univ., Moscow, Russia
  • fYear
    2014
  • fDate
    25-26 Feb. 2014
  • Firstpage
    1
  • Lastpage
    2
  • Abstract
    In this paper we propose a method of indoor navigation using a MEMS-based strapdown inertial navigation system (INS) aided by Wi-Fi signal strength measurements. This system does not rely on any special hardware, a modern smartphone with built-in MEMS sensors (accelerometers and gyroscopes) is sufficient for navigation. The developed INS navigation algorithm is built on the basis of the Kalman Filter solutions using the INS dead reckoning. It operates with positional data provided by Wi-Fi signal strength measurements and Pedestrian Dead Reckoning (PDR). The experimental results demonstrate the feasibility of operating this system with an accuracy of σ = 1.5 m.
  • Keywords
    Global Positioning System; Kalman filters; accelerometers; gyroscopes; inertial navigation; microsensors; radiotelemetry; smart phones; wireless LAN; Kalman filter; MEMS sensor; MEMS-based strapdown inertial navigation system; PDR; Wi-Fi fingerprinting; Wi-Fi signal strength measurement; accelerometer; aided INS; gyroscope; indoor navigation method; indoor positioning; pedestrian dead reckoning; smartphone; Accuracy; Dead reckoning; Filtering algorithms; Fingerprint recognition; IEEE 802.11 Standards; Particle filters; Kalman filter; Pedestrian Dead Reckoning; Wi-Fi fingerprinting; indoor positioning; strapdown INS;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Inertial Sensors and Systems (ISISS), 2014 International Symposium on
  • Conference_Location
    Laguna Beach, CA
  • Type

    conf

  • DOI
    10.1109/ISISS.2014.6782540
  • Filename
    6782540