• DocumentCode
    1301260
  • Title

    A contribution to performance prediction for probabilistic data association tracking filters

  • Author

    Kershaw, D.J. ; Evans, Robin J.

  • Author_Institution
    Aeronaut. & Maritime Res. Lab., DSTO, Melbourne, Vic., Australia
  • Volume
    32
  • Issue
    3
  • fYear
    1996
  • fDate
    7/1/1996 12:00:00 AM
  • Firstpage
    1143
  • Lastpage
    1148
  • Abstract
    The probabilistic data association (PDA) algorithm for tracking in clutter contains a stochastic (data-dependent) Riccati equation for updating the estimation error covariance matrix. This note details a simple analytic approximation to the stochastic Riccati equation that allows precomputation of the estimation error covariance matrices. The potential of the approximation for performance analysis of PDA-based tracking algorithm is demonstrated using a simple example.
  • Keywords
    Kalman filters; clutter; covariance matrices; estimation theory; performance evaluation; probability; stochastic systems; target tracking; tracking filters; analytic approximation; clutter; data-dependent Riccati equation; estimation error covariance matrix; performance analysis; performance prediction; probabilistic data association; stochastic Riccati equation; tracking algorithm; tracking filters; Covariance matrix; Density measurement; Error correction; Estimation error; Filters; Noise measurement; Riccati equations; Stochastic processes; Target tracking; Time measurement; Vectors; Volume measurement;
  • fLanguage
    English
  • Journal_Title
    Aerospace and Electronic Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9251
  • Type

    jour

  • DOI
    10.1109/7.532274
  • Filename
    532274