• DocumentCode
    1335606
  • Title

    Thermal Degradation of Electroplated Nickel Thermal Microactuators

  • Author

    Luo, J.K. ; Fu, Y.Q. ; Williams, J.A. ; Milne, W.I.

  • Volume
    18
  • Issue
    6
  • fYear
    2009
  • Firstpage
    1279
  • Lastpage
    1287
  • Abstract
    In this paper, the thermal degradation of laterally operating thermal actuators made from electroplated nickel has been studied. The actuators investigated delivered a maximum displacement of ca. 20 mum at an average temperature of ~ 450degC , which is much lower than that of typical silicon-based microactuators. However, the magnitude of the displacement strongly depended on the frequency and voltage amplitude of the pulse signal applied. Back bending was observed at maximum temperatures as low as 240degC. Both forward and backward displacements increase as the applied power was increased up to a value of 60 mW; further increases led to reductions in the magnitudes of both displacements. Scanning electron microscopy clearly showed that the nickel beams began to deform and change their shape at this critical power level. Compressive stress is responsible for nickel pileup, while tensile stresses, generated upon removing the current, are responsible for necking at the hottest section of the hot arm of the device. Energy dispersive X-ray diffraction analysis also revealed the severe oxidation of Ni structure induced by Joule heating. The combination of plastic deformation and oxidation was responsible for the observed thermal degradation. Results indicate that nickel thermal microactuators should be operated below 200degC to avoid thermal degradation.
  • Keywords
    X-ray chemical analysis; X-ray diffraction; electroplating; microactuators; nickel; oxidation; plastic deformation; scanning electron microscopy; thermal properties; Joule heating; Ni; back bending; compressive stress; electroplated nickel; energy dispersive X-ray diffraction analysis; frequency amplitude; oxidation; plastic deformation; scanning electron microscopy; tensile stress; thermal degradation; thermal microactuator; voltage amplitude; Actuators; Electron beams; Frequency; Microactuators; Nickel; Oxidation; Scanning electron microscopy; Temperature; Thermal degradation; Voltage; Back bending; electroplating; oxidation; plastic deformation; thermal actuator; thermal degradation;
  • fLanguage
    English
  • Journal_Title
    Microelectromechanical Systems, Journal of
  • Publisher
    ieee
  • ISSN
    1057-7157
  • Type

    jour

  • DOI
    10.1109/JMEMS.2009.2034394
  • Filename
    5337899