DocumentCode
1366108
Title
Scalable and Spectrally Efficient Long-Reach Optical Access Networks Employing Frequency Interleaved Directly Detected Optical OFDM
Author
Mehedy, Lenin ; Bakaul, Masuduzzaman ; Nirmalathas, Ampalavanapillai ; Skafidas, Efstratios
Author_Institution
Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia
Volume
3
Issue
11
fYear
2011
fDate
11/1/2011 12:00:00 AM
Firstpage
881
Lastpage
890
Abstract
Extending the reach of traditional passive optical networks (PONs) to 100 km and increasing the split ratio beyond 1:64 are promising solutions in future optical access networks. These systems can accommodate increased users at longer distances potentially at low cost. With the increasing demand for higher bandwidths, current networks may soon require that bit rates upgrade to 100 Gb/s and beyond. However, the traditional on-off-keyed PON cannot be scaled up to such bit rates, as very high-speed opto-electronic devices are required that are still maturing. Therefore, to provide a comprehensive solution to these scalability issues of existing PONs, we propose a spectrally efficient (4 bit/s/Hz) 100 Gb/s long-reach PON based on 64 quadrature amplitude modulation (QAM) and frequency interleaved directly detected optical orthogonal-frequency-division multiplexing. We show that the proposed system may operate effectively over 100 km of single mode fiber with a 1024-way split and a receiver bandwidth of 25 GHz. It is also shown that the system can be provisioned to support even higher numbers of users (e.g., 2048, 4096, etc.) simply by varying the order of QAM with little compromise in bit rates. Moreover, the effects of various link parameters such as laser linewidths, fiber dispersion, filter profiles, etc. are also investigated for proper link dimensioning.
Keywords
OFDM modulation; optical signal detection; passive optical networks; quadrature amplitude modulation; spectral analysis; PON; QAM; bit rate 100 Gbit/s; direct detection; distance 100 km; frequency interleaving; optical OFDM; optical access networks; orthogonal frequency division multiplexing; passive optical networks; quadrature amplitude modulation; scalability; spectral efficiency; High speed optical techniques; OFDM; Optical receivers; Optical transmitters; Passive optical networks; Direct detection; Frequency interleaving; Long-reach PON; Optical OFDM; Optical access network; Passive optical network; Scalability; Spectral efficiency;
fLanguage
English
Journal_Title
Optical Communications and Networking, IEEE/OSA Journal of
Publisher
ieee
ISSN
1943-0620
Type
jour
DOI
10.1364/JOCN.3.000881
Filename
6065726
Link To Document