• DocumentCode
    1414657
  • Title

    New optimal binary linear codes of dimensions 9 and 10

  • Author

    Gulliver, T. Aaron ; Bhargava, Vijay K.

  • Author_Institution
    Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont., Canada
  • Volume
    43
  • Issue
    1
  • fYear
    1997
  • fDate
    1/1/1997 12:00:00 AM
  • Firstpage
    314
  • Lastpage
    316
  • Abstract
    Eighteen new codes are presented which improve the bounds on maximum minimum distance for binary linear codes. They are rate (m-r)/pm, r⩾1, degenerate quasi-cyclic (QC) codes. Based on the known upper bounds, six of these new codes are optimal. In addition, five two-weight QC codes of dimension 8 are given
  • Keywords
    Galois fields; cyclic codes; linear codes; Galois field; degenerate quasi-cyclic codes; maximum minimum distance; multidimensional codes; optimal binary linear codes; two-weight quasi-cyclic codes; upper bounds; Artificial intelligence; Binary codes; Councils; Error correction codes; Galois fields; Hamming distance; Hamming weight; Linear code; Upper bound; Vectors;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.567725
  • Filename
    567725