DocumentCode
1433476
Title
Cascaded “Triple-Bent-Beam” MEMS Sensor for Contactless Temperature Measurements in Nonaccessible Environments
Author
Andò, Bruno ; Baglio, Salvatore ; Savalli, Nicolò ; Trigona, Carlo
Author_Institution
Dipt. di Ing. Elettr. Elettron. e dei Sist., Univ. of Catania, Catania, Italy
Volume
60
Issue
4
fYear
2011
fDate
4/1/2011 12:00:00 AM
Firstpage
1348
Lastpage
1357
Abstract
A microelectromechanical systems (MEMS) temperature sensor based on a cascade three-stage “bent-beam” structure is described in this paper. A suspended structure mechanically deforms in response to the change in ambient temperature, and then, a displacement is obtained; the structure is composed of three cascaded systems in order to enhance sensor sensitivity. The final conversion is made to an electrical signal that is obtained by using an interdigitated capacitor having one electrode fixed to the substrate and one electrode embedded into the moving tip of the MEMS sensor. The device has been conceived to operate passively in harsh environments where high temperatures could harm active electronic devices. The readout of the unknown temperature is therefore remotely performed by coupling the variable MEMS capacitor to a fixed inductor to compose a resonant LC circuit, which is magnetically coupled to a reader circuit placed outside the environment where the measurement takes place. The temperature to be measured is therefore first converted into a displacement that, in turn, induces a change in a capacitor value; a variation in the resonant frequency of an LC circuit is finally observed through the remote readout circuit. This paper focuses on the analytical and numerical modeling of both the temperature-to-displacement and displacement-to-capacitance conversions, on the design and fabrication of an experimental prototype, on the experimental validation where results are extensively presented and commented, and, finally, on the design of the integrated resonant device for contactless measurements.
Keywords
microsensors; temperature measurement; temperature sensors; MEMS sensor; contactless temperature measurements; interdigitated capacitor; nonaccessible environments; sensor sensitivity; Bent-beam structures; contactless sensors; microelectromechanical systems (MEMS); temperature sensors;
fLanguage
English
Journal_Title
Instrumentation and Measurement, IEEE Transactions on
Publisher
ieee
ISSN
0018-9456
Type
jour
DOI
10.1109/TIM.2010.2101310
Filename
5699389
Link To Document