• DocumentCode
    1433476
  • Title

    Cascaded “Triple-Bent-Beam” MEMS Sensor for Contactless Temperature Measurements in Nonaccessible Environments

  • Author

    Andò, Bruno ; Baglio, Salvatore ; Savalli, Nicolò ; Trigona, Carlo

  • Author_Institution
    Dipt. di Ing. Elettr. Elettron. e dei Sist., Univ. of Catania, Catania, Italy
  • Volume
    60
  • Issue
    4
  • fYear
    2011
  • fDate
    4/1/2011 12:00:00 AM
  • Firstpage
    1348
  • Lastpage
    1357
  • Abstract
    A microelectromechanical systems (MEMS) temperature sensor based on a cascade three-stage “bent-beam” structure is described in this paper. A suspended structure mechanically deforms in response to the change in ambient temperature, and then, a displacement is obtained; the structure is composed of three cascaded systems in order to enhance sensor sensitivity. The final conversion is made to an electrical signal that is obtained by using an interdigitated capacitor having one electrode fixed to the substrate and one electrode embedded into the moving tip of the MEMS sensor. The device has been conceived to operate passively in harsh environments where high temperatures could harm active electronic devices. The readout of the unknown temperature is therefore remotely performed by coupling the variable MEMS capacitor to a fixed inductor to compose a resonant LC circuit, which is magnetically coupled to a reader circuit placed outside the environment where the measurement takes place. The temperature to be measured is therefore first converted into a displacement that, in turn, induces a change in a capacitor value; a variation in the resonant frequency of an LC circuit is finally observed through the remote readout circuit. This paper focuses on the analytical and numerical modeling of both the temperature-to-displacement and displacement-to-capacitance conversions, on the design and fabrication of an experimental prototype, on the experimental validation where results are extensively presented and commented, and, finally, on the design of the integrated resonant device for contactless measurements.
  • Keywords
    microsensors; temperature measurement; temperature sensors; MEMS sensor; contactless temperature measurements; interdigitated capacitor; nonaccessible environments; sensor sensitivity; Bent-beam structures; contactless sensors; microelectromechanical systems (MEMS); temperature sensors;
  • fLanguage
    English
  • Journal_Title
    Instrumentation and Measurement, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9456
  • Type

    jour

  • DOI
    10.1109/TIM.2010.2101310
  • Filename
    5699389