• DocumentCode
    1467938
  • Title

    A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces

  • Author

    Baggenstoss, Paul M.

  • Author_Institution
    Naval Underwater Syst. Center, Newport, RI, USA
  • Volume
    9
  • Issue
    4
  • fYear
    2001
  • fDate
    5/1/2001 12:00:00 AM
  • Firstpage
    411
  • Lastpage
    416
  • Abstract
    We derive an algorithm similar to the well-known Baum-Welch (1970) algorithm for estimating the parameters of a hidden Markov model (HMM). The new algorithm allows the observation PDF of each state to be defined and estimated using a different feature set. We show that estimating parameters in this manner is equivalent to maximizing the likelihood function for the standard parameterization of the HMM defined on the input data space. The processor becomes optimal if the state-dependent feature sets are sufficient statistics to distinguish each state individually from a common state
  • Keywords
    hidden Markov models; parameter estimation; speech recognition; statistical analysis; HMM; hidden Markov models; input data space; maximum likelihood function; modified Baum-Welch algorithm; multiple observation spaces; observation PDF; parameter estimation; processor; state-dependent feature sets; sufficient statistics; Error analysis; Estimation error; Helium; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Performance loss; State estimation; Statistics; Stochastic processes;
  • fLanguage
    English
  • Journal_Title
    Speech and Audio Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1063-6676
  • Type

    jour

  • DOI
    10.1109/89.917686
  • Filename
    917686