• DocumentCode
    1533506
  • Title

    Simulation and Measurements of Stray Minority Carrier Protection Structures in CMOS Image Sensors

  • Author

    Lin, Dong-Long ; Wang, Ching-Chun ; Wei, Chia-Ling

  • Author_Institution
    Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan
  • Volume
    57
  • Issue
    9
  • fYear
    2010
  • Firstpage
    2213
  • Lastpage
    2220
  • Abstract
    Recently, the rapid growth of CMOS technology has made it possible to integrate more periphery circuits into a CMOS image sensor. Although these periphery circuits improve image quality, they also lead to the generation of more stray minority carriers. Because the number of stray minority carriers is proportional to the frequency, the affected region increases with increasing operating frequency. Placing an appropriate absorber between the periphery circuits and the pixel has traditionally been accepted as the best solution for this issue. Four protection tactics were simulated in software and verified in a fabricated CMOS image sensor. The imager was fabricated using TSMC 1-poly 6-metal 0.18-μm process technology. On this chip, ten noise sources outside the pixel array were used to verify the effectiveness of the protection tactics in off-array tests, whereas in-pixel noise sources were used in in-pixel tests. To quantify the influence of stray minority carriers in the off-array test, the maximum depth of an affected region (DAR) was measured in a processed binary image. The off-array experimental results revealed that the DAR increased with either an increased operating frequency or a decreased separation between the noise source and the pixel array. The DAR of the affected pixels can be eliminated up to 48.1% and 23.8% by using the N-well and N-diffusion guard rings, respectively. The in-pixel experimental results have shown that the N-diffusion digital pixel implementation reduced the noise by 63.2% while only increasing the area by 10.68%. Detailed information about the effectiveness of different protection tactics in an imager design was collected in this paper. This paper can potentially provide a reference to help imager designers choose an appropriate protection tactic.
  • Keywords
    CMOS image sensors; minority carriers; CMOS image sensor; N-diffusion digital pixel implementation; N-diffusion guard ring; N-well guard ring; image quality; imager design; periphery circuit; pixel array; protection tactic; size 0.18 mum; stray minority carrier protection structure; CMOS image sensors; CMOS technology; Circuit noise; Circuit simulation; Frequency; Image quality; Integrated circuit measurements; Noise reduction; Protection; Testing; CMOS image sensor; N-diffusion guard ring; N-well guard ring;
  • fLanguage
    English
  • Journal_Title
    Electron Devices, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9383
  • Type

    jour

  • DOI
    10.1109/TED.2010.2055275
  • Filename
    5508387