• DocumentCode
    1553487
  • Title

    A minor subspace analysis algorithm

  • Author

    Luo, Fa-Long ; Unbehauen, Rolf

  • Author_Institution
    Lehrstuhl fur Allgemeine und Theor. Elektrotech., Erlangen-Nurnberg Univ., Germany
  • Volume
    8
  • Issue
    5
  • fYear
    1997
  • fDate
    9/1/1997 12:00:00 AM
  • Firstpage
    1149
  • Lastpage
    1155
  • Abstract
    This paper proposes a learning algorithm which extracts adaptively the minor subspace spanned by the eigenvectors corresponding to the smallest eigenvalues of the autocorrelation matrix of an input signal. We show both analytically and by simulation results that the weight vectors provided by the proposed algorithm are guaranteed to converge to the minor subspace of the input signal. For wider applications, we also present the complex valued version of the proposed minor subspace analysis algorithm
  • Keywords
    adaptive systems; convergence of numerical methods; covariance matrices; eigenvalues and eigenfunctions; learning systems; neural nets; parameter estimation; signal processing; spectral analysis; adaptive systems; autocorrelation matrix; convergence; covariance matrix; eigenvalues; eigenvectors; learning algorithm; minor subspace analysis; neural networks; optimisation; parameter estimation; signal processing; spectral analysis; weight vectors; Adaptive signal processing; Additive noise; Algorithm design and analysis; Analytical models; Autocorrelation; Convergence; Covariance matrix; Eigenvalues and eigenfunctions; Signal analysis; Signal processing algorithms;
  • fLanguage
    English
  • Journal_Title
    Neural Networks, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1045-9227
  • Type

    jour

  • DOI
    10.1109/72.623215
  • Filename
    623215