• DocumentCode
    1630663
  • Title

    A novel cluster validity criterion for fuzzy C-regression models

  • Author

    Kung, Chung-Chun ; Su, Jui-Yiao ; Nieh, Yi-Fen

  • Author_Institution
    Dept. of Electr. Eng., Tatung Univ., Taipei, Taiwan
  • fYear
    2009
  • Firstpage
    1885
  • Lastpage
    1890
  • Abstract
    This paper proposed a novel cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with hyper-plane-shaped clusters. We combined the concept of fuzzy hypervolume with the compactness validity function in the cluster validity criterion. The proposed cluster validity criterion determined the appropriate number of clusters by calculating the overall compactness and separateness of the FCRM partition. The simulation results demonstrated the validness and effectiveness of the proposed method.
  • Keywords
    fuzzy set theory; pattern clustering; regression analysis; cluster validity criterion; compactness validity function; fuzzy c-regression model clustering algorithm; fuzzy hypervolume; hyper-plane-shaped clusters; Algorithm design and analysis; Clustering algorithms; Entropy; Partitioning algorithms; fuzzy c-regression model (FCRM); fuzzy hypervolume;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference on
  • Conference_Location
    Jeju Island
  • ISSN
    1098-7584
  • Print_ISBN
    978-1-4244-3596-8
  • Electronic_ISBN
    1098-7584
  • Type

    conf

  • DOI
    10.1109/FUZZY.2009.5277386
  • Filename
    5277386