DocumentCode
179240
Title
Exploring the use of ENF for multimedia synchronization
Author
Hui Su ; Hajj-Ahmad, Adi ; Min Wu ; Oard, Douglas W.
Author_Institution
Univ. of Maryland, College Park, MD, USA
fYear
2014
fDate
4-9 May 2014
Firstpage
4613
Lastpage
4617
Abstract
The electric network frequency (ENF) signal can be captured in multimedia recordings due to electromagnetic influences from the power grid at the time of recording. Recent work has exploited the ENF signals for forensic applications, such as authenticating and detecting forgery of ENF-containing multimedia signals, and inferring their time and location of creation. In this paper, we explore a new potential of ENF signals for automatic synchronization of audio and video. The ENF signal as a time-varying random process can be used as a timing fingerprint of multimedia signals. Synchronization of audio and video recordings can be achieved by aligning their embedded ENF signals. We demonstrate the proposed scheme with two applications: multi-view video synchronization and synchronization of historical audio recordings. The experimental results show the ENF based synchronization approach is effective, and has the potential to solve problems that are intractable by other existing methods.
Keywords
audio recording; electromagnetic interference; random processes; synchronisation; video recording; ENF signal; electric network frequency signal; forensic applications; historical audio recording automatic synchronization; multimedia recordings; multimedia signal timing fingerprint; multiview video recording automatic synchronization; power grid; time-varying random process; Audio recording; Forensics; Frequency estimation; Multimedia communication; Streaming media; Synchronization; Video recording; ENF; audio; historical recordings; synchronization; video;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location
Florence
Type
conf
DOI
10.1109/ICASSP.2014.6854476
Filename
6854476
Link To Document