DocumentCode
1804417
Title
A 6b 1.6GS/s ADC with redundant cycle 1-tap embedded DFE in 90nm CMOS
Author
Tabasy, E. Zhian ; Shafik, A. ; Huang, S. ; Yang, N. ; Hoyos, S. ; Palermo, S.
Author_Institution
Texas A&M Univ., College Station, TX, USA
fYear
2012
fDate
9-12 Sept. 2012
Firstpage
1
Lastpage
4
Abstract
Serial link receivers with ADC front-ends are emerging in order to scale data rates over high attenuation channels. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-efficient receiver. This paper presents a 6b 1.6GS/s ADC with a novel embedded DFE structure. Leveraging a time-interleaved SAR ADC architecture, a redundant cycle loop-unrolled technique is proposed in order to relax the DFE feedback critical path delay with low power/area overhead. Fabricated in an LP 90nm CMOS process, the 6b ADC with embedded 1-tap DFE consumes 20mW total power, including front-end T/Hs and reference buffers, and the core time-interleaved ADC occupies 0.24mm2 area.
Keywords
CMOS integrated circuits; analogue-digital conversion; decision feedback equalisers; digital signal processing chips; ADC front-end; CMOS; DFE feedback critical path delay; back-end DSP; core time-interleaved ADC; front-end ADC; partial equalization; power 20 mW; redundant cycle 1-tap embedded DFE; redundant cycle loop-unrolled technique; reference buffer; serial link receiver; size 90 nm; time-interleaved SAR ADC architecture; Bandwidth; CMOS integrated circuits; Calibration; Clocks; Decision feedback equalizers; Digital signal processing; Receivers;
fLanguage
English
Publisher
ieee
Conference_Titel
Custom Integrated Circuits Conference (CICC), 2012 IEEE
Conference_Location
San Jose, CA
ISSN
0886-5930
Print_ISBN
978-1-4673-1555-5
Electronic_ISBN
0886-5930
Type
conf
DOI
10.1109/CICC.2012.6330582
Filename
6330582
Link To Document