• DocumentCode
    1805272
  • Title

    Unsupervised algorithms for distributed estimation over adaptive networks

  • Author

    Bin Saeed, Muhammad O. ; Zerguine, Azzedine ; Zummo, S.A. ; Sayed, Ali H.

  • Author_Institution
    Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, United Arab Emirates
  • fYear
    2012
  • fDate
    4-7 Nov. 2012
  • Firstpage
    1780
  • Lastpage
    1783
  • Abstract
    This work shows how to develop distributed versions of block blind estimation techniques that have been proposed before for batch processing. Using diffusion adaptation techniques, data are accumulated at the nodes to form estimates of the auto-correlation matrices and to carry out local SVD and/or Cholesky decomposition steps. Local estimates at neighborhoods are then aggregated to provide online streaming estimates of the parameters of interest. Simulation results illustrate the performance of the algorithms.
  • Keywords
    ad hoc networks; adaptive estimation; matrix algebra; singular value decomposition; Cholesky decomposition steps; ad-hoc network; adaptive networks; autocorrelation matrices; batch processing; block blind estimation techniques; diffusion adaptation techniques; distributed estimation; local SVD; online streaming; unsupervised algorithms; Blind estimation; Cholesky factorization; SVD; auto-correlation matrix; diffusion strategy;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signals, Systems and Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar Conference on
  • Conference_Location
    Pacific Grove, CA
  • ISSN
    1058-6393
  • Print_ISBN
    978-1-4673-5050-1
  • Type

    conf

  • DOI
    10.1109/ACSSC.2012.6489340
  • Filename
    6489340