DocumentCode
1807433
Title
Nonuniform Sampling for Global Optimization of Kinetic Rate Constants in Biological Pathways
Author
Kleinstein, Steven H. ; Bottino, Dean ; Georgieva, Anna ; Sarangapani, Ramesh ; Lett, G. Scott
Author_Institution
Dept. of Pathology, Yale Univ. Sch. of Med., New Haven, CT
fYear
2006
fDate
3-6 Dec. 2006
Firstpage
1611
Lastpage
1616
Abstract
Global optimization has proven to be a powerful tool for solving parameter estimation problems in biological applications, such as the estimation of kinetic rate constants in pathway models. These optimization algorithms sometimes suffer from slow convergence, stagnation or misconvergence to a non-optimal local minimum. Here we show that a nonuniform sampling method (implemented by running the optimization in a transformed space) can improve convergence and robustness for evolutionary-type algorithms, specifically differential evolution and evolutionary strategies. Results are shown from two case studies exemplifying the common problems of stagnation and misconvergence
Keywords
biology; evolutionary computation; parameter estimation; sampling methods; biological pathways; differential evolution; evolutionary strategies; evolutionary-type algorithms; global optimization; kinetic rate constants; nonuniform sampling method; parameter estimation; Biological system modeling; Convergence; Evolution (biology); Kinetic theory; Mathematical model; Medical simulation; Nonuniform sampling; Optimization methods; Parameter estimation; Robustness;
fLanguage
English
Publisher
ieee
Conference_Titel
Simulation Conference, 2006. WSC 06. Proceedings of the Winter
Conference_Location
Monterey, CA
Print_ISBN
1-4244-0500-9
Electronic_ISBN
1-4244-0501-7
Type
conf
DOI
10.1109/WSC.2006.322934
Filename
4117792
Link To Document