• DocumentCode
    1807433
  • Title

    Nonuniform Sampling for Global Optimization of Kinetic Rate Constants in Biological Pathways

  • Author

    Kleinstein, Steven H. ; Bottino, Dean ; Georgieva, Anna ; Sarangapani, Ramesh ; Lett, G. Scott

  • Author_Institution
    Dept. of Pathology, Yale Univ. Sch. of Med., New Haven, CT
  • fYear
    2006
  • fDate
    3-6 Dec. 2006
  • Firstpage
    1611
  • Lastpage
    1616
  • Abstract
    Global optimization has proven to be a powerful tool for solving parameter estimation problems in biological applications, such as the estimation of kinetic rate constants in pathway models. These optimization algorithms sometimes suffer from slow convergence, stagnation or misconvergence to a non-optimal local minimum. Here we show that a nonuniform sampling method (implemented by running the optimization in a transformed space) can improve convergence and robustness for evolutionary-type algorithms, specifically differential evolution and evolutionary strategies. Results are shown from two case studies exemplifying the common problems of stagnation and misconvergence
  • Keywords
    biology; evolutionary computation; parameter estimation; sampling methods; biological pathways; differential evolution; evolutionary strategies; evolutionary-type algorithms; global optimization; kinetic rate constants; nonuniform sampling method; parameter estimation; Biological system modeling; Convergence; Evolution (biology); Kinetic theory; Mathematical model; Medical simulation; Nonuniform sampling; Optimization methods; Parameter estimation; Robustness;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Simulation Conference, 2006. WSC 06. Proceedings of the Winter
  • Conference_Location
    Monterey, CA
  • Print_ISBN
    1-4244-0500-9
  • Electronic_ISBN
    1-4244-0501-7
  • Type

    conf

  • DOI
    10.1109/WSC.2006.322934
  • Filename
    4117792