• DocumentCode
    1955725
  • Title

    Automatic keyword extraction with relational clustering and Levenshtein distances

  • Author

    Runkler, Thomas A. ; Bezdek, James C.

  • Author_Institution
    Corp. Technol., Siemens AG, Munich, Germany
  • Volume
    2
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    636
  • Abstract
    Alternating cluster estimation (ACE) is a generalized clustering model. Relational ACE is a modification of ACE that can be used to cluster data which do not possess a clear numerical representation, but for which a meaningful relation matrix can be defined. For text data sets we define (pairwise) relation matrices based on the Levenshtein string distance (1966). Relational ACE with Levenshtein distances is applied to four different texts. The cluster centers represent typical words in the texts, so this algorithm can be used to automatically determine keywords
  • Keywords
    matrix algebra; pattern clustering; text analysis; ACE; Levenshtein distances; Levenshtein string distance; alternating cluster estimation; automatic keyword extraction; generalized clustering model; numerical representation; pairwise relation matrices; relation matrix; relational clustering; Clustering algorithms; Communications technology; Computer science; Data analysis; Data mining; Image sensors; Image sequence analysis; Optimization methods; Pixel; Prototypes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems, 2000. FUZZ IEEE 2000. The Ninth IEEE International Conference on
  • Conference_Location
    San Antonio, TX
  • ISSN
    1098-7584
  • Print_ISBN
    0-7803-5877-5
  • Type

    conf

  • DOI
    10.1109/FUZZY.2000.839067
  • Filename
    839067