• DocumentCode
    2089715
  • Title

    XSS Vulnerability Detection Using Model Inference Assisted Evolutionary Fuzzing

  • Author

    Duchene, Fabien ; Groz, Roland ; Rawat, Sanjay ; Richier, Jean-Luc

  • Author_Institution
    Lab. d´´Inf. de Grenoble, UJF-Grenoble 1, Grenoble, France
  • fYear
    2012
  • fDate
    17-21 April 2012
  • Firstpage
    815
  • Lastpage
    817
  • Abstract
    We present an approach to detect web injection vulnerabilities by generating test inputs using a combination of model inference and evolutionary fuzzing. Model inference is used to obtain a knowledge about the application behavior. Based on this understanding, inputs are generated using genetic algorithm (GA). GA uses the learned formal model to automatically generate inputs with better fitness values towards triggering an instance of the given vulnerability.
  • Keywords
    Internet; fuzzy set theory; genetic algorithms; program testing; security of data; Web injection vulnerability detection; application behavior; cross site scripting vulnerability detection; genetic algorithm; model inference assisted evolutionary fuzzing; test input generation; Conferences; Genetic algorithms; Grammar; HTML; Production; Security; Testing; Black-Box Security Testing; Genetic Algorithm; Model Based Fuzzing; Model Inference; Test Automation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on
  • Conference_Location
    Montreal, QC
  • Print_ISBN
    978-1-4577-1906-6
  • Type

    conf

  • DOI
    10.1109/ICST.2012.181
  • Filename
    6200193