DocumentCode
228891
Title
Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis
Author
Feizollah, Ali ; Anuar, Nor Badrul ; Salleh, Rosli ; Amalina, Fairuz
Author_Institution
Comput. Syst. & Technol. Dept., Univ. of Malaya, Kuala Lumpur, Malaysia
fYear
2014
fDate
26-27 Aug. 2014
Firstpage
193
Lastpage
197
Abstract
This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.
Keywords
Android (operating system); invasive software; pattern clustering; telecommunication traffic; Android; MalGenome; malware detection; mini batch k-means clustering algorithms; network traffic analysis; Accuracy; Androids; Clustering algorithms; Humanoid robots; Malware; Telecommunication traffic; Android; clustering; dynamic analysis; malware;
fLanguage
English
Publisher
ieee
Conference_Titel
Biometrics and Security Technologies (ISBAST), 2014 International Symposium on
Conference_Location
Kuala Lumpur
Print_ISBN
978-1-4799-6443-7
Type
conf
DOI
10.1109/ISBAST.2014.7013120
Filename
7013120
Link To Document