• DocumentCode
    228891
  • Title

    Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis

  • Author

    Feizollah, Ali ; Anuar, Nor Badrul ; Salleh, Rosli ; Amalina, Fairuz

  • Author_Institution
    Comput. Syst. & Technol. Dept., Univ. of Malaya, Kuala Lumpur, Malaysia
  • fYear
    2014
  • fDate
    26-27 Aug. 2014
  • Firstpage
    193
  • Lastpage
    197
  • Abstract
    This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.
  • Keywords
    Android (operating system); invasive software; pattern clustering; telecommunication traffic; Android; MalGenome; malware detection; mini batch k-means clustering algorithms; network traffic analysis; Accuracy; Androids; Clustering algorithms; Humanoid robots; Malware; Telecommunication traffic; Android; clustering; dynamic analysis; malware;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biometrics and Security Technologies (ISBAST), 2014 International Symposium on
  • Conference_Location
    Kuala Lumpur
  • Print_ISBN
    978-1-4799-6443-7
  • Type

    conf

  • DOI
    10.1109/ISBAST.2014.7013120
  • Filename
    7013120