• DocumentCode
    2364366
  • Title

    Seidel´s legacy and the existence of complex equiangular Parseval frames

  • Author

    Bodmann, Bernhard G. ; Elwood, Helen J.

  • Author_Institution
    Dept. of Math., Univ. of Houston, Houston, TX, USA
  • fYear
    2010
  • fDate
    17-19 March 2010
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    Seidel´s combinatorial approach to the construction of real, symmetric matrices with unimodular entries and two eigenvalues has produced many equiangular Parseval frames for real Hilbert spaces. We follow Seidel´s footsteps and develop a corresponding combinatorial characterization of complex Seidel matrices belonging to equiangular Parseval frames. We deduce necessary conditions for the existence of complex Seidel matrices containing pth roots of unity and having exactly two eigenvalues, under the assumption that p is prime. Explicitly examining the necessary conditions for p = 5, for example, rules out the existence of many such frames with a number of vectors less than 50. Nevertheless, there are examples, which we confirm by constructing p2 × p2 Seidel matrices containing pth roots of unity and having two eigenvalues. and thus the existence of the associated complex equiangular Parseval frames, for any p ¿ 2.
  • Keywords
    eigenvalues and eigenfunctions; matrix algebra; Hilbert spaces; Seidel matrices; Seidel´s combinatorial approach; eigenvalues; equiangular Parseval frames; equiangular parseval frames; Collaborative work; Eigenvalues and eigenfunctions; Encoding; Hilbert space; Mathematics; Signal design; Signal processing; Symmetric matrices; Terminology;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Sciences and Systems (CISS), 2010 44th Annual Conference on
  • Conference_Location
    Princeton, NJ
  • Print_ISBN
    978-1-4244-7416-5
  • Electronic_ISBN
    978-1-4244-7417-2
  • Type

    conf

  • DOI
    10.1109/CISS.2010.5464808
  • Filename
    5464808