• DocumentCode
    2419335
  • Title

    Building Default Predicting Model on Firm´s Short-term Loan Data with Artificial Neural Network - Considering Qualitative Indexes and Misclassification Costs

  • Author

    Ruowei, Ma ; Deyong, Yang

  • Author_Institution
    Sch. of Econ., Beijing Technol. & Bus. Univ., Beijing, China
  • fYear
    2010
  • fDate
    7-9 May 2010
  • Firstpage
    3775
  • Lastpage
    3778
  • Abstract
    To date, using model to predict whether firm´s default is still a problem. It presents: a. most model using pairwise pattern; b. lack of qualitative indexes that affect firm´s default; c. asymmetric between normal firm´s misclassification costs and default firm´s. So, introducing qualitative indexes, using all samples and considering misclassification costs, this paper builds an artificial neural network model on short-term-loan data. Though training, validating and testing, it´s performance is good.
  • Keywords
    bank data processing; neural nets; pattern classification; statistical analysis; artificial neural network; default predicting model; misclassification cost; pairwise pattern; qualitative index; short term loan data; Artificial neural networks; Banking; Biological system modeling; Data models; Electronic countermeasures; Indexes; Mathematical model; artificial neural network; misclassification costs; qualitative indexes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    E-Business and E-Government (ICEE), 2010 International Conference on
  • Conference_Location
    Guangzhou
  • Print_ISBN
    978-0-7695-3997-3
  • Type

    conf

  • DOI
    10.1109/ICEE.2010.946
  • Filename
    5591813