DocumentCode
2450458
Title
An Approach to the Dyadic Green´s Functions for a Rectangular Chirowaveguide
Author
Haiyang, Zhong ; Zhian, Qin
Author_Institution
Dept. of Phys., Dalian Maritime Univ., Dalian
fYear
2006
fDate
26-29 Oct. 2006
Firstpage
1
Lastpage
4
Abstract
A novel method of formulating eigenfunction expansion of the dyadic Green´s function in lossless, recipcocal and homogeneous chirowaveguides is given,using this method, the non-divergence vector potential equation can be transformed into that similar to achiral media,the corresponding wavefield decomposition is used to obtain the vector wave function. A specific application to the analytic solution of electromagnetic wave propagation in a rectangular chirowaveguide illustrates the method.
Keywords
Green´s function methods; chirowaveguides; eigenvalues and eigenfunctions; electromagnetic wave propagation; rectangular waveguides; vectors; achiral media; dyadic Greens function; eigenfunction expansion; electromagnetic wave propagation; homogeneous chirowaveguide; lossless chirowaveguide; nondivergence vector potential equation; reciprocal chirowaveguide; rectangular chirowaveguide; vector wave function; wavefield decomposition; Eigenvalues and eigenfunctions; Electromagnetic analysis; Electromagnetic fields; Electromagnetic propagation; Electromagnetic scattering; Green function; Green´s function methods; Maxwell equations; Physics; Wave functions;
fLanguage
English
Publisher
ieee
Conference_Titel
Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on
Conference_Location
Guilin
Print_ISBN
1-4244-0162-3
Electronic_ISBN
1-4244-0163-1
Type
conf
DOI
10.1109/ISAPE.2006.353561
Filename
4168222
Link To Document