• DocumentCode
    2450458
  • Title

    An Approach to the Dyadic Green´s Functions for a Rectangular Chirowaveguide

  • Author

    Haiyang, Zhong ; Zhian, Qin

  • Author_Institution
    Dept. of Phys., Dalian Maritime Univ., Dalian
  • fYear
    2006
  • fDate
    26-29 Oct. 2006
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    A novel method of formulating eigenfunction expansion of the dyadic Green´s function in lossless, recipcocal and homogeneous chirowaveguides is given,using this method, the non-divergence vector potential equation can be transformed into that similar to achiral media,the corresponding wavefield decomposition is used to obtain the vector wave function. A specific application to the analytic solution of electromagnetic wave propagation in a rectangular chirowaveguide illustrates the method.
  • Keywords
    Green´s function methods; chirowaveguides; eigenvalues and eigenfunctions; electromagnetic wave propagation; rectangular waveguides; vectors; achiral media; dyadic Greens function; eigenfunction expansion; electromagnetic wave propagation; homogeneous chirowaveguide; lossless chirowaveguide; nondivergence vector potential equation; reciprocal chirowaveguide; rectangular chirowaveguide; vector wave function; wavefield decomposition; Eigenvalues and eigenfunctions; Electromagnetic analysis; Electromagnetic fields; Electromagnetic propagation; Electromagnetic scattering; Green function; Green´s function methods; Maxwell equations; Physics; Wave functions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on
  • Conference_Location
    Guilin
  • Print_ISBN
    1-4244-0162-3
  • Electronic_ISBN
    1-4244-0163-1
  • Type

    conf

  • DOI
    10.1109/ISAPE.2006.353561
  • Filename
    4168222