• DocumentCode
    2468818
  • Title

    Performance bounds for subspace estimation in array signal processing

  • Author

    Srivastava, Anuj

  • Author_Institution
    Dept. of Stat., Florida State Univ., Tallahassee, FL, USA
  • fYear
    1998
  • fDate
    14-16 Sep 1998
  • Firstpage
    140
  • Lastpage
    143
  • Abstract
    Estimation of unknown parameters using arrays of passive sensors is a well-known problem in signal processing. This problem is studied via subspace estimation using geometric representations on Grassman manifolds. The variability on Grassman manifolds is modeled by a transitive action of a special unitary group and by using a Bayesian formulation on the space of unitary matrices. An a posteriori is used to derive an MMSE estimator and a lower-bound on the expected squared error. Empirical analysis using stochastic gradient processes is considered for numerical computation of the estimator and the lower bound
  • Keywords
    Bayes methods; array signal processing; gradient methods; group theory; least mean squares methods; matrix algebra; parameter estimation; signal representation; stochastic processes; Bayesian formulation; Grassman manifolds; MMSE; array signal processing; geometric representations; passive sensors; performance bounds; stochastic gradient processes; subspace estimation; transitive action; unitary group; unitary matrices; unknown parameter estimation; Acoustic sensors; Array signal processing; Bayesian methods; Optical arrays; Optical sensors; Optical transmitters; Parameter estimation; Sensor arrays; Signal processing; Signal processing algorithms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Statistical Signal and Array Processing, 1998. Proceedings., Ninth IEEE SP Workshop on
  • Conference_Location
    Portland, OR
  • Print_ISBN
    0-7803-5010-3
  • Type

    conf

  • DOI
    10.1109/SSAP.1998.739354
  • Filename
    739354