• DocumentCode
    2488386
  • Title

    The implication of data diversity for a classifier-free ensemble selection in random subspaces

  • Author

    Ko, A.H.-R. ; Sabourin, R. ; de Oliveira, L.E.S. ; de Souza Britto, A.

  • Author_Institution
    Ecole de Technol. Super., Univ. of Quebec, Montreal, QC
  • fYear
    2008
  • fDate
    8-11 Dec. 2008
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    Ensemble of Classifiers (EoC) has been shown effective in improving the performance of single classifiers by combining their outputs. By using diverse data subsets to train classifiers, the ensemble creation methods can create diverse classifiers for the EoC. In this work, we propose a scheme to measure the data diversity directly from random subspaces and we explore the possibility of using the data diversity directly to select the best data subsets for the construction of the EoC. The applicability is tested on NIST SD19 handwritten numerals.
  • Keywords
    data handling; pattern classification; classifier training; classifier-free ensemble selection; data diversity; ensemble creation methods; random subspaces; Bagging; Boosting; Clustering algorithms; Diversity reception; NIST; Pattern recognition; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
  • Conference_Location
    Tampa, FL
  • ISSN
    1051-4651
  • Print_ISBN
    978-1-4244-2174-9
  • Type

    conf

  • DOI
    10.1109/ICPR.2008.4761767
  • Filename
    4761767