• DocumentCode
    2519068
  • Title

    Linear network codes and systems of polynomial equations

  • Author

    Dougherty, Randall ; Freiling, Chris ; Zeger, Kenneth

  • Author_Institution
    Center for Commun. Res., San Diego, CA
  • fYear
    2008
  • fDate
    6-11 July 2008
  • Firstpage
    1838
  • Lastpage
    1842
  • Abstract
    If beta and gamma are nonnegative integers and F is a field, then a polynomial collection {p1,..., pbeta}subeZ[alpha1,..., alphagamma] is said to be solvable over F if there exist omega1,..., omegagammaisinF such that for all i=1,..., beta we have pi(omega1,..., omegagamma)=0. We say that a network and a polynomial collection are solvably equivalent if for each field F the network has a scalar-linear solution over F if and only if the polynomial collection is solvable over F. Koetter and Medardpsilas work implies that for any directed acyclic network, there exists a solvably equivalent polynomial collection. We provide the converse result, namely that for any polynomial collection there exists a solvably equivalent directed acyclic network. (Hence, the problems of network scalar-linear solvability and polynomial collection solvability have the same complexity.) The construction of the network is modeled on a matroid construction using finite projective planes, due to MacLane in 1936. A set psi of prime numbers is a set of characteristics of a network if for every qisinpsi, the network has a scalar-linear solution over some finite field with characteristic q and does not have a scalar-linear solution over any finite field whose characteristic lies outside of psi. We show that a collection of primes is a set of characteristics of some network if and only if the collection is finite or co-finite. Two networks N and N´ are ls-equivalent if for any finite field F, N is scalar-linearly solvable over F if and only if N´ is scalar-linearly solvable over F. We further show that every network is ls-equivalent to a multiple-unicast matroidal network.
  • Keywords
    linear codes; polynomials; directed acyclic network; finite projective planes; linear network codes; linear network systems; multiple-unicast matroidal network; nonnegative integers; polynomial collection; polynomial equation; scalar-linear solution; Computer networks; Equations; Galois fields; Mathematics; Polynomials; Vectors; Wireless communication;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 2008. ISIT 2008. IEEE International Symposium on
  • Conference_Location
    Toronto, ON
  • Print_ISBN
    978-1-4244-2256-2
  • Electronic_ISBN
    978-1-4244-2257-9
  • Type

    conf

  • DOI
    10.1109/ISIT.2008.4595306
  • Filename
    4595306