• DocumentCode
    2535973
  • Title

    Evolution Strategies with q-Gaussian Mutation for Dynamic Optimization Problems

  • Author

    Tinos, Renato ; Yang, Shengxiang

  • Author_Institution
    Dept. de Fisica e Mat., Grupo de Inf. Biomed., Univ. de Sao Paulo (USP), Sao Paulo, Brazil
  • fYear
    2010
  • fDate
    23-28 Oct. 2010
  • Firstpage
    223
  • Lastpage
    228
  • Abstract
    Evolution strategies with q-Gaussian mutation, which allows the self-adaptation of the mutation distribution shape, is proposed for dynamic optimization problems in this paper. In the proposed method, a real parameter q, which allows to smoothly control the shape of the mutation distribution, is encoded in the chromosome of the individuals and is allowed to evolve. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on four experiments generated from the simulation of evolutionary robots.
  • Keywords
    Gaussian distribution; cellular biophysics; evolutionary computation; optimisation; Cauchy mutation; Gaussian mutation; chromosome; dynamic optimization; evolution strategy; evolutionary robot; Batteries; Gaussian distribution; Mobile robots; Optimization; Robot sensing systems; Evolution strategies; dynamic environments; evolutionary algorithm; q-Gaussian mutation; robotics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks (SBRN), 2010 Eleventh Brazilian Symposium on
  • Conference_Location
    Sao Paulo
  • ISSN
    1522-4899
  • Print_ISBN
    978-1-4244-8391-4
  • Electronic_ISBN
    1522-4899
  • Type

    conf

  • DOI
    10.1109/SBRN.2010.46
  • Filename
    5715241