• DocumentCode
    2671559
  • Title

    Recursive structure estimation for nonlinear identification with modular networks

  • Author

    Kadirkamanathan, Visakan ; Fabri, Simon G.

  • Author_Institution
    Dept. of Autom. Control & Syst. Eng., Sheffield Univ., UK
  • fYear
    1998
  • fDate
    31 Aug-2 Sep 1998
  • Firstpage
    343
  • Lastpage
    350
  • Abstract
    The paper presents a recursive nonlinear identification scheme with modular networks consisting of local linear models. New local linear models are added online as and when necessary. The algorithms is developed within a probabilistic framework and utilises the Kalman filter for estimation of model parameters. Simulated results demonstrate the operation of the algorithm
  • Keywords
    Kalman filters; filtering theory; neural nets; probability; recursive estimation; Kalman filter; local linear models; model parameter estimation; modular neural networks; nonlinear identification; probabilistic framework; recursive structure estimation; Adaptive control; Control systems; Integrated circuit modeling; Linear systems; Nonlinear dynamical systems; Nonlinear systems; Parameter estimation; Recursive estimation; System identification; Systems engineering and theory;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop
  • Conference_Location
    Cambridge
  • ISSN
    1089-3555
  • Print_ISBN
    0-7803-5060-X
  • Type

    conf

  • DOI
    10.1109/NNSP.1998.710664
  • Filename
    710664