DocumentCode
2710816
Title
Spatiotemporal Relational Probability Trees: An Introduction
Author
McGovern, Amy ; Hiers, Nathan C. ; Collier, Matthew ; Gagne, David J., II ; Brown, Rodger A.
Author_Institution
Univ. of Oklahoma, OK
fYear
2008
fDate
15-19 Dec. 2008
Firstpage
935
Lastpage
940
Abstract
We introduce spatiotemporal relational probability trees (SRPTs), probability estimation trees for relational data that can vary in both space and time. The SRPT algorithm addresses the exponential increase in search complexity through sampling. We validate the SRPT using a simulated data set and we empirically demonstrate the SRPT algorithm on two real-world data sets.
Keywords
probability; relational databases; trees (mathematics); probability estimation trees; real-world data sets; spatiotemporal relational probability trees; Data mining; Decision trees; Discrete event simulation; Floods; Logic programming; Sampling methods; Space technology; Spatiotemporal phenomena; Storms; Tornadoes; spatiotemporal; statistical relational data mining;
fLanguage
English
Publisher
ieee
Conference_Titel
Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on
Conference_Location
Pisa
ISSN
1550-4786
Print_ISBN
978-0-7695-3502-9
Type
conf
DOI
10.1109/ICDM.2008.134
Filename
4781204
Link To Document