DocumentCode
2848660
Title
Robust iterative learning control for nonlinear system based on T-S model
Author
Zhan, Xisheng
Author_Institution
Dept. of Control Sci. & Eng., Hubei Normal Univ., Huangshi, China
fYear
2010
fDate
26-28 May 2010
Firstpage
2115
Lastpage
2119
Abstract
A design method of robust iterative learning controller (RILC) is proposed for nonlinear system with repetitive actions in this paper. First, the Takagi and Sugeno (T-S) fuzzy model is employed to approximate a nonlinear system with repetitive actions, and thus global fuzzy system model is displayed as the form of uncertain systems. Next the robust iterative learning controller is designed by the T-S fuzzy model employed as a dynamic model of nonlinear system. The proposed controller is obtained by solving linear matrix inequalities (LMI), and both sufficient and essential of the convergence conditions are deducted by Lyapunov theory. The proposed controller needs not satisfy the condition of fully observable as well as we did before. A single inverted pendulum problem has been simulated with RILC and compared with iterative learning controller (ILC) and the results show that RILC performs better than ILC.
Keywords
Lyapunov methods; fuzzy control; fuzzy set theory; learning systems; linear matrix inequalities; nonlinear control systems; robust control; uncertain systems; LMI; Lyapunov theory; RILC; T-S model; Takagi-Sugeno fuzzy model; dynamic model; global fuzzy system model; inverted pendulum problem; linear matrix inequalities; nonlinear system; robust iterative learning control; uncertain system; Control system synthesis; Control systems; Design methodology; Fuzzy control; Fuzzy systems; Iterative methods; Nonlinear control systems; Nonlinear systems; Robust control; Uncertain systems; T-S model; iterative learning control; linear matrix inequality; nonlinear;
fLanguage
English
Publisher
ieee
Conference_Titel
Control and Decision Conference (CCDC), 2010 Chinese
Conference_Location
Xuzhou
Print_ISBN
978-1-4244-5181-4
Electronic_ISBN
978-1-4244-5182-1
Type
conf
DOI
10.1109/CCDC.2010.5498877
Filename
5498877
Link To Document