DocumentCode
3020123
Title
Using neuroevolution for optimal impedance control
Author
De Gea, Jose ; Kirchner, Frank
Author_Institution
Robot. Group, Univ. of Bremen, Bremen
fYear
2008
fDate
15-18 Sept. 2008
Firstpage
1063
Lastpage
1066
Abstract
This paper describes the use of evolutionary algorithms to find an optimal solution for the parameters of an impedance controller represented as an artificial neural network (ANN). An impedance controller with force tracking capabilities has been evolved using evolutionary strategies which control the forces between a robotic manipulator and the environment. Simulation results show the controllerpsilas performance using a model of a two-link robot arm and a Hunt-Crossley non-linear model of the environment.
Keywords
electric impedance; electric variables control; evolutionary computation; force control; manipulators; neurocontrollers; nonlinear control systems; optimal control; Hunt-Crossley nonlinear model; artificial neural network; evolutionary algorithms; force control; force tracking capabilities; neuroevolution; optimal impedance control; robotic manipulator; two-link robot arm; Artificial neural networks; Control systems; Force control; Force measurement; Genetic mutations; Impedance; Intelligent robots; Manipulator dynamics; Neural networks; Optimal control;
fLanguage
English
Publisher
ieee
Conference_Titel
Emerging Technologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference on
Conference_Location
Hamburg
Print_ISBN
978-1-4244-1505-2
Electronic_ISBN
978-1-4244-1506-9
Type
conf
DOI
10.1109/ETFA.2008.4638525
Filename
4638525
Link To Document