• DocumentCode
    3020123
  • Title

    Using neuroevolution for optimal impedance control

  • Author

    De Gea, Jose ; Kirchner, Frank

  • Author_Institution
    Robot. Group, Univ. of Bremen, Bremen
  • fYear
    2008
  • fDate
    15-18 Sept. 2008
  • Firstpage
    1063
  • Lastpage
    1066
  • Abstract
    This paper describes the use of evolutionary algorithms to find an optimal solution for the parameters of an impedance controller represented as an artificial neural network (ANN). An impedance controller with force tracking capabilities has been evolved using evolutionary strategies which control the forces between a robotic manipulator and the environment. Simulation results show the controllerpsilas performance using a model of a two-link robot arm and a Hunt-Crossley non-linear model of the environment.
  • Keywords
    electric impedance; electric variables control; evolutionary computation; force control; manipulators; neurocontrollers; nonlinear control systems; optimal control; Hunt-Crossley nonlinear model; artificial neural network; evolutionary algorithms; force control; force tracking capabilities; neuroevolution; optimal impedance control; robotic manipulator; two-link robot arm; Artificial neural networks; Control systems; Force control; Force measurement; Genetic mutations; Impedance; Intelligent robots; Manipulator dynamics; Neural networks; Optimal control;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Emerging Technologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference on
  • Conference_Location
    Hamburg
  • Print_ISBN
    978-1-4244-1505-2
  • Electronic_ISBN
    978-1-4244-1506-9
  • Type

    conf

  • DOI
    10.1109/ETFA.2008.4638525
  • Filename
    4638525