• DocumentCode
    3064922
  • Title

    Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients

  • Author

    Ebrahimi, Farideh ; Mikaeili, Mohammad ; Estrada, Edson ; Nazeran, Homer

  • Author_Institution
    Biomedical Engineering Department, Shahed University, Tehran, Iran
  • fYear
    2008
  • fDate
    20-25 Aug. 2008
  • Firstpage
    1151
  • Lastpage
    1154
  • Abstract
    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 ± 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 ± 4.0%.
  • Keywords
    Artificial neural networks; Electrocardiography; Electroencephalography; Electromyography; Electrooculography; Inspection; Medical treatment; Neural networks; Sleep; Wavelet packets; Algorithms; Diagnosis, Computer-Assisted; Electroencephalography; Humans; Neural Networks (Computer); Oscillometry; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Sleep Stages;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE
  • Conference_Location
    Vancouver, BC
  • ISSN
    1557-170X
  • Print_ISBN
    978-1-4244-1814-5
  • Electronic_ISBN
    1557-170X
  • Type

    conf

  • DOI
    10.1109/IEMBS.2008.4649365
  • Filename
    4649365