DocumentCode
3067577
Title
Unsupervised Bayesian classifier applied to the segmentation of retina image
Author
Banga, C. ; Ghorbel, F. ; Pieczynski, W.
Author_Institution
Groupe Image, Institut National des Télécommunications - ENIC, 6, rue des techniques 59658 Villeneuve d´´Ascq CEDEX France
Volume
5
fYear
1992
fDate
Oct. 29 1992-Nov. 1 1992
Firstpage
1847
Lastpage
1848
Abstract
In this paper, we use a stochastic model based on the finite normal mixture distribution identification for retina image segmentation. Local unsupervised methods blind and contextual, using the Expectation-Maximisation (EM) family algorithms for parameter estimation are tested. To get rid of the spatial dependence effect of pixels, a decorrelation processing is used before parameter estimation. The segmentation is then performed by Bayesian decision rule. Segmentation results are presented to prove the effectiveness of different approaches.
Keywords
Annealing; Bayesian methods; Image segmentation; Noise measurement; Pixel;
fLanguage
English
Publisher
ieee
Conference_Titel
Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE
Conference_Location
Paris, France
Print_ISBN
0-7803-0785-2
Electronic_ISBN
0-7803-0816-6
Type
conf
DOI
10.1109/IEMBS.1992.5762067
Filename
5762067
Link To Document