• DocumentCode
    3067577
  • Title

    Unsupervised Bayesian classifier applied to the segmentation of retina image

  • Author

    Banga, C. ; Ghorbel, F. ; Pieczynski, W.

  • Author_Institution
    Groupe Image, Institut National des Télécommunications - ENIC, 6, rue des techniques 59658 Villeneuve d´´Ascq CEDEX France
  • Volume
    5
  • fYear
    1992
  • fDate
    Oct. 29 1992-Nov. 1 1992
  • Firstpage
    1847
  • Lastpage
    1848
  • Abstract
    In this paper, we use a stochastic model based on the finite normal mixture distribution identification for retina image segmentation. Local unsupervised methods blind and contextual, using the Expectation-Maximisation (EM) family algorithms for parameter estimation are tested. To get rid of the spatial dependence effect of pixels, a decorrelation processing is used before parameter estimation. The segmentation is then performed by Bayesian decision rule. Segmentation results are presented to prove the effectiveness of different approaches.
  • Keywords
    Annealing; Bayesian methods; Image segmentation; Noise measurement; Pixel;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE
  • Conference_Location
    Paris, France
  • Print_ISBN
    0-7803-0785-2
  • Electronic_ISBN
    0-7803-0816-6
  • Type

    conf

  • DOI
    10.1109/IEMBS.1992.5762067
  • Filename
    5762067