DocumentCode
312747
Title
Multi-model decoupled generic model control
Author
Riggs, James B. ; Lee, Peter L.
Author_Institution
Dept. of Chem. Eng., Texas Tech. Univ., Lubbock, TX, USA
Volume
4
fYear
1997
fDate
4-6 Jun 1997
Firstpage
2488
Abstract
The control performance of generic model control (Lee and Sullivan, 1988) using steady-state models (Cott et al., 1989) to control distributed parameter systems can be significantly undermined by the lack of appropriate dynamic information. A decoupling strategy has been integrated into the GMC framework in order to compensate for dynamic mismatch. The approach, called the multi-model decoupler, is based upon using a separate model inverse for the calculation of each manipulated variable. The additional model inputs provide the extra degrees of freedom that allow for dynamic compensation
Keywords
compensation; control system analysis; distributed parameter systems; dynamics; decoupling; distributed parameter systems; dynamic compensation; generic model control; multiple model decoupler; steady-state models; Chemical engineering; Control system synthesis; Distributed control; Distributed parameter systems; Equations; Inverse problems; Manipulator dynamics; Process control; State estimation; Steady-state;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, 1997. Proceedings of the 1997
Conference_Location
Albuquerque, NM
ISSN
0743-1619
Print_ISBN
0-7803-3832-4
Type
conf
DOI
10.1109/ACC.1997.609229
Filename
609229
Link To Document