• DocumentCode
    3194912
  • Title

    Robust designs of a kind of uncoupled CNNs with nonlinear templates

  • Author

    Min, Lequan ; Zhang, Xiaojie

  • Author_Institution
    Appl. Sci. Sch., Univ. of Sci. & Technol. Beijing, Beijing
  • fYear
    2008
  • fDate
    25-27 May 2008
  • Firstpage
    978
  • Lastpage
    981
  • Abstract
    The robust designs for cellular neural/nonlinear network (CNN) templates are one of the important issues for the practical applications of CNNs. This paper establishes two new theorems for robust designs of a kind of uncoupled CNNs. The theorems provide parameter inequalities to determine parameter intervals for implementing prescribed image processing functions, respectively. Three examples for detecting edges, corners or contours in images are presented to illustrate the effectiveness of the methodology.
  • Keywords
    Hopfield neural nets; edge detection; Hopfield neural network; cellular neural-nonlinear network template; edge detection; image processing function; parameter inequalities; Cellular networks; Cellular neural networks; Circuits; Equations; Hopfield neural networks; Image edge detection; Image processing; Information processing; Robustness; Very large scale integration;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Communications, Circuits and Systems, 2008. ICCCAS 2008. International Conference on
  • Conference_Location
    Fujian
  • Print_ISBN
    978-1-4244-2063-6
  • Electronic_ISBN
    978-1-4244-2064-3
  • Type

    conf

  • DOI
    10.1109/ICCCAS.2008.4657933
  • Filename
    4657933