• DocumentCode
    3482697
  • Title

    Optimisation of particle filters using simultaneous perturbation stochastic approximation

  • Author

    Chan, Bao Ling ; Doucet, Arnaud ; Tadic, Vladislav B.

  • Author_Institution
    Dept of Electr. & Electron. Eng., Univ. of Melbourne, Vic., Australia
  • Volume
    6
  • fYear
    2003
  • fDate
    6-10 April 2003
  • Abstract
    The paper addresses the optimisation of particle filtering methods aka sequential Monte Carlo (SMC) methods using stochastic approximation. First, the SMC algorithm is parameterised smoothly by a parameter. Second, optimisation of an average cost function is performed using simultaneous perturbation stochastic approximation (SPSA). Simulations demonstrate the efficiency of our algorithm.
  • Keywords
    Monte Carlo methods; approximation theory; filtering theory; optimisation; perturbation techniques; sampling methods; stochastic processes; average cost function optimisation; data analysis; particle filters; random samples; sequential Monte Carlo methods; simultaneous perturbation stochastic approximation; Cost function; Filtering; Finite difference methods; Measurement standards; Optimization methods; Particle filters; Signal processing; Sliding mode control; State estimation; Stochastic processes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-7663-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.2003.1201773
  • Filename
    1201773