DocumentCode
3494210
Title
Neural network training using multi-channel data with aggregate labelling
Author
McGrogan, N. ; Bishop, C.M. ; Tarassenko, L.
Author_Institution
Dept. of Eng. Sci., Oxford Univ., UK
Volume
2
fYear
1999
fDate
1999
Firstpage
862
Abstract
The solution of classification problems using statistical techniques requires appropriately labelled training data. In the case of multi-channel data, however, the labels may only be available in aggregate form rather than as separate labels for each individual-channel. Standard techniques, using a trained model to classify each channel separately, are therefore precluded. We present a method of training neural network classifiers from aggregate labels. This technique allows the network to learn what significant events on individual channels result in the given labels. We apply this training method to two synthetic (but, in the second case, realistic) problems and compare the results with those from a classifier trained on the accurate channel labels, which would usually not be available. On previously unseen test data for the two problems 97.75% and 99.1% of feature vectors were classified correctly by a network trained on aggregate labels. These represent reductions of only 0.5% and 0.1% from classifiers trained on accurate labels for all channels
Keywords
pattern classification; aggregate labelling; classification problems; multi-channel data; neural network classifiers; neural network training; significant events; statistical techniques;
fLanguage
English
Publisher
iet
Conference_Titel
Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470)
Conference_Location
Edinburgh
ISSN
0537-9989
Print_ISBN
0-85296-721-7
Type
conf
DOI
10.1049/cp:19991220
Filename
818043
Link To Document