• DocumentCode
    3518079
  • Title

    Volterra series for analyzing MLP based phoneme posterior estimator

  • Author

    Pinto, Joel ; Sivaram, G.S.V.S. ; Hermansky, H. ; Magimai-Doss, M.

  • Author_Institution
    Idiap Res. Inst., Martigny
  • fYear
    2009
  • fDate
    19-24 April 2009
  • Firstpage
    1813
  • Lastpage
    1816
  • Abstract
    We present a framework to apply Volterra series to analyze multi-layered perceptrons trained to estimate the posterior probabilities of phonemes in automatic speech recognition. The identified Volterra kernels reveal the spectro-temporal patterns that are learned by the trained system for each phoneme. To demonstrate the applicability of Volterra series, we analyze a multilayered perceptron trained using Mel filter bank energy features and analyze its first order Volterra kernels.
  • Keywords
    Volterra series; channel bank filters; estimation theory; multilayer perceptrons; probability; speech recognition; MLP; Mel filter bank energy features; Volterra kernels; Volterra series; automatic speech recognition; multilayered perceptrons; phoneme posterior estimator; posterior probability; spectro-temporal patterns; Analysis of variance; Automatic speech recognition; Feature extraction; Filter bank; Finite impulse response filter; Hidden Markov models; Kernel; Multilayer perceptrons; Speech analysis; Speech recognition; Volterra series; multilayered perceptrons; speech recognition;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
  • Conference_Location
    Taipei
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-2353-8
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2009.4959958
  • Filename
    4959958