• DocumentCode
    352905
  • Title

    Parameter specification for fuzzy clustering by Q-learning

  • Author

    Oh, Chi-hyon ; Ikeda, Eriko ; Honda, Katsuhiro ; Ichihshi, H.

  • Author_Institution
    Dept. of Ind. Eng., Osaka Prefecture Univ., Japan
  • Volume
    4
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    9
  • Abstract
    In this paper, we propose a new method to specify the sequence of parameter values for a fuzzy clustering algorithm by using Q-learning. In the clustering algorithm, we employ similarities between two data points and distances from data to cluster centers as the fuzzy clustering criteria. The fuzzy clustering is achieved by optimizing an objective function which is solved by the Picard iteration. The fuzzy clustering algorithm might be useful but its result depends on the parameter specifications. To conquer the dependency on the parameter values, we use Q-learning to learn the sequential update for the parameters during the iterative optimization procedure of the fuzzy clustering. In the numerical example, we show how the clustering validity improves by the obtained parameter update sequences
  • Keywords
    learning (artificial intelligence); pattern clustering; Picard iteration; Q-learning; fuzzy clustering; iterative optimization; reinforcement learning; Clustering algorithms; Educational institutions; Industrial engineering; Iterative algorithms; Lagrangian functions; Learning; Motion planning; Neural networks; Partitioning algorithms; Virtual colonoscopy;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on
  • Conference_Location
    Como
  • ISSN
    1098-7576
  • Print_ISBN
    0-7695-0619-4
  • Type

    conf

  • DOI
    10.1109/IJCNN.2000.860733
  • Filename
    860733