• DocumentCode
    3587754
  • Title

    A recursive way for sparse reconstruction of parametric spaces

  • Author

    Teke, Oguzhan ; Gurbuz, Ali Cafer ; Arikan, Orhan

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
  • fYear
    2014
  • Firstpage
    637
  • Lastpage
    641
  • Abstract
    A novel recursive framework for sparse reconstruction of continuous parameter spaces is proposed by adaptive partitioning and discretization of the parameter space together with expectation maximization type iterations. Any sparse solver or reconstruction technique can be used within the proposed recursive framework. Experimental results show that proposed technique improves the parameter estimation performance of classical sparse solvers while achieving Cramér-Rao lower bound on the tested frequency estimation problem.
  • Keywords
    expectation-maximisation algorithm; frequency estimation; signal reconstruction; Cramér-Rao lower bound; adaptive discretization; adaptive partitioning; classical sparse solvers; continuous parameter spaces; expectation maximization type iterations; frequency estimation problem; parameter estimation performance; parameter space; recursive framework; sparse reconstruction technique; sparse solver; Compressed sensing; Dictionaries; Estimation; Frequency estimation; Signal to noise ratio; Sparse matrices; Compressive sensing; basis mismatch; off-grid targets; recursive solver; sparse reconstruction;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signals, Systems and Computers, 2014 48th Asilomar Conference on
  • Print_ISBN
    978-1-4799-8295-0
  • Type

    conf

  • DOI
    10.1109/ACSSC.2014.7094524
  • Filename
    7094524