• DocumentCode
    3672662
  • Title

    Estimating load carriage from a body-worn accelerometer

  • Author

    James R. Williamson;Andrew Dumas;Greg Ciccarelli;Austin R. Hess;Brian A. Telfer;Mark J. Buller

  • Author_Institution
    MIT Lincoln Laboratory, Lexington, MA 02421
  • fYear
    2015
  • fDate
    6/1/2015 12:00:00 AM
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    Heavy loads increase the risk of musculoskeletal injury for foot soldiers and first responders. Continuous monitoring of load carriage in the field has proven difficult. We propose an algorithm for estimating load from a single body-worn accelerometer. The algorithm utilizes three different methods for characterizing torso movement dynamics, and maps the extracted dynamics features to load estimates using two machine learning multivariate regression techniques. The algorithm is applied, using leave-one-subject-out cross-validation, to two field collections of soldiers and civilians walking with varying loads. Rapid, accurate estimates of load are obtained, demonstrating robustness to changes in equipment configuration, walking conditions, and walking speeds. On soldier data with loads ranging from 45 to 89 lbs, load estimates result in mean absolute error (MAE) of 6.64 lbs and correlation of r = 0.81. On combined soldier and civilian data, with loads ranging from 0 to 89 lbs, results are MAE = 9.57 lbs and r = 0.91.
  • Keywords
    "Correlation","Legged locomotion","Feature extraction","Acceleration","Accelerometers","Heuristic algorithms","Principal component analysis"
  • Publisher
    ieee
  • Conference_Titel
    Wearable and Implantable Body Sensor Networks (BSN), 2015 IEEE 12th International Conference on
  • Type

    conf

  • DOI
    10.1109/BSN.2015.7299356
  • Filename
    7299356