DocumentCode
3684444
Title
A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks
Author
Changhan Wang;Xinchen Yan;Max Smith;Kanika Kochhar;Marcie Rubin;Stephen M. Warren;James Wrobel;Honglak Lee
Author_Institution
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA
fYear
2015
Firstpage
2415
Lastpage
2418
Abstract
Wound surface area changes over multiple weeks are highly predictive of the wound healing process. Furthermore, the quality and quantity of the tissue in the wound bed also offer important prognostic information. Unfortunately, accurate measurements of wound surface area changes are out of reach in the busy wound practice setting. Currently, clinicians estimate wound size by estimating wound width and length using a scalpel after wound treatment, which is highly inaccurate. To address this problem, we propose an integrated system to automatically segment wound regions and analyze wound conditions in wound images. Different from previous segmentation techniques which rely on handcrafted features or unsupervised approaches, our proposed deep learning method jointly learns task-relevant visual features and performs wound segmentation. Moreover, learned features are applied to further analysis of wounds in two ways: infection detection and healing progress prediction. To the best of our knowledge, this is the first attempt to automate long-term predictions of general wound healing progress. Our method is computationally efficient and takes less than 5 seconds per wound image (480 by 640 pixels) on a typical laptop computer. Our evaluations on a large-scale wound database demonstrate the effectiveness and reliability of the proposed system.
Keywords
"Wounds","Image segmentation","Support vector machines","Feature extraction","Neural networks","Visualization","Training"
Publisher
ieee
Conference_Titel
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
ISSN
1094-687X
Electronic_ISBN
1558-4615
Type
conf
DOI
10.1109/EMBC.2015.7318881
Filename
7318881
Link To Document