DocumentCode
3755803
Title
Bond percolation in clustered multilayer networks
Author
Yong Zhuang;Osman Ya?an
Author_Institution
Department of ECE and CyLab, Carnegie Mellon University, Pittsburgh, PA 15213 USA
fYear
2015
Firstpage
851
Lastpage
555
Abstract
In today´s world, individuals interact with each other in more complicated patterns than ever. Some individuals engage through online social networks (e.g., Facebook, Twitter), while some communicate only through conventional ways (e.g., face-to-face). Therefore, understanding the dynamics of information propagation calls for a multi-layer network model where an online social network is conjoined with a physical network. Here, we study information diffusion in a clustered multi-layer network model, where all constituent layers are random networks with high clustering. We assume that information propagates according to the SIR model and with different information transmissibility across the networks. Taking advantage of the isomorphism between bond percolation and information propagation processes, we give results for the conditions, probability, and size of information epidemics. We show that increasing the level of clustering in either one of the layers increases the epidemic threshold and decreases the final epidemic size.
Keywords
"Facebook","Nonhomogeneous media","Analytical models","Computational modeling","Random variables","Twitter"
Publisher
ieee
Conference_Titel
Signals, Systems and Computers, 2015 49th Asilomar Conference on
Electronic_ISBN
1058-6393
Type
conf
DOI
10.1109/ACSSC.2015.7421256
Filename
7421256
Link To Document