• DocumentCode
    383387
  • Title

    The chain-rule processor: optimal classification through signal processing

  • Author

    Baggenstoss, Paul M.

  • Author_Institution
    Naval Undersea Warfare Center, Newport, RI, USA
  • Volume
    1
  • fYear
    2002
  • fDate
    2002
  • Firstpage
    230
  • Abstract
    The chain-rule processor is a method of constructing an optimal Bayes classifier from a bank of processors. Each processor is a feature extractor designed to separate the given class from a class-dependent reference hypothesis, thereby avoiding the curse of dimensionality. This work builds upon prior work in optimal classifier design using class-specific features. The chain-rule processor is an improvement that recursively applies the PDF projection theorem.
  • Keywords
    Bayes methods; feature extraction; image classification; chain-rule processor; class-dependent reference hypothesis; feature extractor; optimal Bayes classifier; optimal classification; signal processing; Data mining; Feature extraction; Multidimensional signal processing; Multidimensional systems; Parameter estimation; Probability density function; Signal processing; Training data;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2002. Proceedings. 16th International Conference on
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-1695-X
  • Type

    conf

  • DOI
    10.1109/ICPR.2002.1044663
  • Filename
    1044663