• DocumentCode
    417507
  • Title

    Minimum entropy estimation in semi parametric models

  • Author

    Wolwynski, R. ; Thierry, Éric ; Pronzato, Luc

  • Author_Institution
    Univ. de Nice-Sophia Antipolis - CNRS, Sophia Antipolis, France
  • Volume
    2
  • fYear
    2004
  • fDate
    17-21 May 2004
  • Abstract
    The paper is a continuation of earlier work (Pronzato and Thierry, Proc. 20th Int. Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, p.169-80, 2001; Proc. ICASSP, 2001): we estimate parameters in a regression model, linear or not, by minimizing (an estimate of) the entropy of the symmetrized residuals, obtained by a kernel estimation of their distribution. The objective is to obtain efficiency in the absence of knowledge of the density, f, of the observation errors, which is called adaptive estimation (Stein, C., 1956; Stone, C.J., 1975; Bickel, P.J., 1982;. Manski, C.F, 1984). Connections and differences with previous work are indicated. Numerical results illustrate that asymptotic efficiency is not necessarily in conflict with robustness.
  • Keywords
    adaptive estimation; minimisation; minimum entropy methods; parameter estimation; regression analysis; adaptive estimation; minimum entropy estimation; observation errors; parameter estimation; regression model; semi-parametric models; Adaptive estimation; Dispersion; Entropy; Kernel; Maximum likelihood estimation; Parameter estimation; Parametric statistics; Random variables; Robustness; Symmetric matrices;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-8484-9
  • Type

    conf

  • DOI
    10.1109/ICASSP.2004.1326440
  • Filename
    1326440