DocumentCode
417507
Title
Minimum entropy estimation in semi parametric models
Author
Wolwynski, R. ; Thierry, Éric ; Pronzato, Luc
Author_Institution
Univ. de Nice-Sophia Antipolis - CNRS, Sophia Antipolis, France
Volume
2
fYear
2004
fDate
17-21 May 2004
Abstract
The paper is a continuation of earlier work (Pronzato and Thierry, Proc. 20th Int. Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, p.169-80, 2001; Proc. ICASSP, 2001): we estimate parameters in a regression model, linear or not, by minimizing (an estimate of) the entropy of the symmetrized residuals, obtained by a kernel estimation of their distribution. The objective is to obtain efficiency in the absence of knowledge of the density, f, of the observation errors, which is called adaptive estimation (Stein, C., 1956; Stone, C.J., 1975; Bickel, P.J., 1982;. Manski, C.F, 1984). Connections and differences with previous work are indicated. Numerical results illustrate that asymptotic efficiency is not necessarily in conflict with robustness.
Keywords
adaptive estimation; minimisation; minimum entropy methods; parameter estimation; regression analysis; adaptive estimation; minimum entropy estimation; observation errors; parameter estimation; regression model; semi-parametric models; Adaptive estimation; Dispersion; Entropy; Kernel; Maximum likelihood estimation; Parameter estimation; Parametric statistics; Random variables; Robustness; Symmetric matrices;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
ISSN
1520-6149
Print_ISBN
0-7803-8484-9
Type
conf
DOI
10.1109/ICASSP.2004.1326440
Filename
1326440
Link To Document