• DocumentCode
    432975
  • Title

    Optimal sparse representations for blind source separation and blind deconvolution: a learning approach

  • Author

    Bronstein, Michael M. ; Bronstein, Alexunder M. ; Zibulevsky, Michael ; Zeevi, Yehoshua Y.

  • Author_Institution
    Dept. of Comput. Sci., Israel Inst. of Technol., Haifa, Israel
  • Volume
    3
  • fYear
    2004
  • fDate
    24-27 Oct. 2004
  • Firstpage
    1815
  • Abstract
    We present a generic approach, which allows to adapt sparse blind deconvolution and blind source separation algorithms to arbitrary sources. The key idea is to bring the problem to the case in which the underlying sources are sparse by applying a sparsifying transformation on the mixtures. We present simulation results and show that such transformation can be found by training. Properties of the optimal sparsifying transformation are highlighted by an example with aerial images.
  • Keywords
    blind source separation; deconvolution; image representation; aerial image; blind deconvolution; blind source separation; optimal sparse representation; sparse blind deconvolution; sparsifying transformation; Blind source separation; Computer science; Crosstalk; Deconvolution; Image processing; Image restoration; Large scale integration; Optimization methods; Source separation; Statistical distributions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 2004. ICIP '04. 2004 International Conference on
  • ISSN
    1522-4880
  • Print_ISBN
    0-7803-8554-3
  • Type

    conf

  • DOI
    10.1109/ICIP.2004.1421428
  • Filename
    1421428