DocumentCode
484713
Title
Heavy-Tailed Rayleigh Distribution: A New Tool for the Modeling of SAR Amplitude Images
Author
Sun, Zengguo ; Han, Chongzhao
Author_Institution
Sch. of Electron. & Inf. Eng., Xi´´an Jiaotong Univ., Xi´´an
Volume
4
fYear
2008
fDate
7-11 July 2008
Abstract
In order to model the synthetic aperture radar (SAR) amplitude images as the heavy-tailed Rayleigh distribution, we focus our attention on two questions in this paper. First, based on the negative-order moments, we propose the logarithmic moment estimator and the iterative logarithmic moment estimator to accurately estimate the parameters of the heavy-tailed Rayleigh distribution. Second, we use the asymptotic series to evaluate the density function of heavytailed Rayleigh distribution, and propose an efficient threestep method suitable for real-time calculation based on interpolating polynomial fit. SAR image modeling experiments demonstrate that the heavy-tailed Rayleigh distribution reflects the high peak and heavy tail of SAR amplitude images, so it is an accurate tool for the modeling of SAR amplitude images.
Keywords
geophysical techniques; geophysics computing; interpolation; iterative methods; parameter estimation; polynomial approximation; radar cross-sections; remote sensing by radar; synthetic aperture radar; SAR amplitude image modeling; SAR image modeling; asymptotic series; density function; heavy tailed Rayleigh distribution; interpolating polynomial fit; iterative logarithmic moment estimator; negative order moments; parameter estimation; synthetic aperture radar; Automation; Density functional theory; Parameter estimation; Polynomials; Probability distribution; Radar scattering; Rayleigh scattering; Statistical distributions; Sun; Synthetic aperture radar; Heavy-tailed Rayleigh modeling; Monte Carlo simulation; asymptotic series; interpolating polynomial fit; negative-order moments;
fLanguage
English
Publisher
ieee
Conference_Titel
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location
Boston, MA
Print_ISBN
978-1-4244-2807-6
Electronic_ISBN
978-1-4244-2808-3
Type
conf
DOI
10.1109/IGARSS.2008.4779957
Filename
4779957
Link To Document